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Abstract

Objective—Low heart rate variability (HRV) has been linked to cardiovascular disease. Our 

objective was to examine the cross-sectional association between insulin and HRV.

Methods—Insulin levels were measured in 355 nondiabetic officers from the BCOPS study, 

following a 12 h fast. HRV was performed according to methods published by the task force of the 

European Society of Cardiology and the North American Society of Pacing Electrophysiology for 

measurement and analysis of HRV. Mean values of high (HF) and low frequency (LF) HRV were 

compared across tertiles of insulin using ANOVA and ANCOVA; p-values were obtained from 

linear regression models.

Results—Higher mean levels of insulin were significantly associated with lower (i.e., worse) 

mean levels of HRV before and after risk-factor adjustment. The results for HF HRV (ms2) were 

as follows: 1st insulin (µU/ml) tertile (156.3; 95% confidence interval (CI) = 128.6–189.9); 2nd 

tertile (154.3; 95% CI = 124.3–191.5); 3rd tertile (127.9; 95% CI = 105.0–155.8), p for trend = 

0.017. Results with LF HRV were similar to HF HRV. Insulin was also inversely and significantly 

associated with HRV among officers with BMI ≥25 kg/m2, with ≥25.5% body fat, and among 

those who reported low (<median) physical activity scores.
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Conclusions—In this cohort, insulin levels were inversely and significantly associated with 

both HF and LF HRV, especially among those with higher levels of obesity and lower levels of 

physical activity, suggesting associations with autonomic nervous system function. Prospective 

studies of this association in other populations are warranted.

Cardiovascular disease (CVD) is the number one cause of morbidity and mortality in the 

United States (Kung et al., 2008) and studies show that police officers experience a greater 

burden of CVD than persons in the general population (Zimmerman, 2012). Heart rate 

variability (HRV), which reflects the beat-to-beat variability in heart rate, is considered a 

noninvasive marker of the cardiovascular control system, the renin-angiotensin-aldosterone 

system, and the autonomic nervous system (Stockhorst et al., 2011). Lower HRV has been 

associated with ongoing subclinical inflammation (Haensel et al., 2008), an increased risk of 

CVD morbidity and mortality (Chandra et al., 2012; Fukuta et al., 2003; Oikawa et al., 

2009), and diabetes mellitus (Malpas and Maling, 1990).

CVD has been linked to metabolic dysfunction, and several markers of metabolic function, 

one of which is insulin, may be associated with HRV. There is little information on the 

relationship between insulin and HRV but Schroeder et al. (2005) assessed the progression 

of autonomic impairment among individuals with nondiabetic hyperinsulinemia (Schroeder 

et al., 2005). Their results showed that, among nondiabetic subjects at baseline, individuals 

with hyperinsulinemia had lower HRV than subjects without hyperinsulinemia. The 

relationship between insulin and HRV was present in a dose-response manner throughout 

the insulin distribution. Other researchers have studied the relationship with HRV when 

insulin is administered but those results between insulin and HRV have been inconsistent. 

Stockhorst et al. (2011) observed that administration of insulin resulted in an acute increase 

in the high frequency (HF) band of HRV while other investigators (Bellavere et al., 1996; 

Van De Borne et al., 1999) reported a decrease in the HF band of HRV following insulin 

administrations. In addition, van de Borne et al. did not observe any effect on the low 

frequency (LF) band of HRV from insulin. The results of an experiment performed on 12 

nonobese young men (18–36 years) showed that insulin infusion increased sympathetic 

nervous system activity in the absence of changes in blood glucose (Rowe et al., 1981).

Decreased HRV has been observed in individuals with increased psychological stress levels 

(Lee and Theus, 2012; Rieger et al., 2013; Suh et al., 2013) and has been proposed as a link 

between psychosocial risk and workplace stress in the development of metabolic and CVD 

(Thayer et al., 2010). Police officers may be at increased risk for decreased HRV due to their 

constant exposure to several occupational stressors (Covey et al., 2013; Fekedulegn et al., 

2012; Miller, 2006; Violanti, 2011). In a recently published article on this cohort of police 

officers, both male and female officers reported experiencing psychologically threatening 

events on a regular basis (approximately three or more events per day in the past month) 

with events involving organizational and administrative pressure occurring more often than 

other events (Hartley et al., 2011). Female officers reported overall slightly higher mean 

stress ratings, which are likely to be chronic, than male officers. Stress affects the 

hypothalamic-pituitary-adrenal axis resulting in higher levels of cortisol and abdominal 

obesity, with consequences for impaired insulin sensitivity (Bjorntorp, 2001; Bjorntorp and 

Rosmond, 1999). To the best of our knowledge, there are no published studies investigating 
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the association between insulin and HRV in police officers. The objective of this study was 

to investigate the association between insulin and HRV and determine if gender significantly 

modified this association. We hypothesized that there would be an inverse association 

between insulin and HRV.

METHODS

Study design and participants

Between June 2004 and October 2009, ~710 police officers employed at the Buffalo, New 

York Police Department were invited to participate in the Buffalo Cardio-metabolic 

Occupational Police Stress (BCOPS) study, a cross-sectional comprehensive examination of 

the health consequences of stress in law enforcement officers. Some of them had previously 

participated in the 1999–2000 (n = 115) and 2001–2003 (n = 100) examinations. Data were 

collected at The Center for Health Research, School of Public Health and Health 

Professions, University at Buffalo, State University of New York (Violanti et al., 2006). The 

State University of New York at Buffalo Internal Review Board approved the study and 

informed consent was obtained from all participants. The original sample size was 464 but 

only 447 officers underwent the ECG procedure. Of the 447 officers who completed the 

resting ECG measurements, those who reported having a history of irregular heart rate 

during their health history examination (n = 25) or had significant evidence of irregular 

beats or abnormal QRS intervals during the BCOPS exam (n = 32) were excluded from 

these analyses, resulting in 390 officers with satisfactory HRV measurements. In addition, 

33 retired officers, 16 officers who were diagnosed with diabetes, and 18 officers who did 

not have complete information on insulin levels were also excluded (categories are not 

mutually exclusive). The final sample size for these cross-sectional analyses on insulin and 

HRV was 355 officers (91 women and 264 men).

Clinic examination

Each officer in this study had all measurements obtained on the same day. The officers were 

instructed to abstain from eating or drinking anything but water, strenuous physical exercise, 

and use of tobacco after 10 p.m. on the night before the day of examination. All officers 

were given a standardized breakfast of 280 calories around 8:30 a.m. after blood specimens 

were collected and before other components of the examination were performed.

Assessment of heart rate variability

Details of the assessment of HRV have been published elsewhere (Andrew et al., 2013). 

Measurement of HRV was performed according to standard methods published by the Task 

Force of the European Society of Cardiology and the North American Society of Pacing 

Electrophysiology for measurement and analysis of HRV (Camm et al., 1996).

The ultrasound technician placed sequence time markers on the measured time series to 

indicate the beginning and end of the carotid ultrasound examination. Resting ECG time 

series were extracted from the first 5 min of carotid ultrasound examination. Each time 

series was processed using an automated data adaptive QRS detection package that inserts a 
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time marker at each proposed R wave peak (Bsanalyze advanced biosignal processing 

system with ECG toolbox from Guger Technologies, Graz, Austria, www.gtec.at).

Data editing included visual inspection of the ECG time series overlaid with QRS markers 

and hand editing of R wave markers where needed.

The RR time series resulting from this process was processed using cubic spline 

interpolation to provide a time series with equal sample increments at two samples per 

second. The interpolated time series was then detrended using a smoothness priors method 

(Tarvainen et al., 2002). Next, the data were processed using a parametric autoregressive 

spectral analysis of order 16 (Boardman et al., 2002). The HF component of HRV is defined 

as the area under the power spectral density from 0.15 to 0.4 Hz. The LF component is the 

area under the power spectral density between frequencies 0.04 to 0.15 Hz. These were 

obtained by calculating the area under the estimated power spectral density curve for the 

appropriate frequency intervals. All of these calculations are carried out using the R 

language. These methods are standard for short-term HRV measurements.

Assessment of insulin

Insulin was measured in fasting serum specimens by a chemiluminescent microparticle 

immunoassay (CMIA) test using the ARCHITECT i1000SR System. The normal range is 2–

20 µU/ml.

Assessment of covariates

Officers provided information on demographic characteristics, lifestyle behaviors, and 

medical history and medication using self-and interviewer-administered questionnaires. 

Officers were asked how often they consumed alcoholic beverages with one drink defined as 

a 12 oz. can or bottle of beer, one medium glass of wine, or one shot of liquor. The total 

number of drinks consumed per week was used. Officers reported their smoking status as 

current, former, or never. BMI was calculated as weight (in kilograms) divided by height (in 

meters) squared. Trained and certified technicians from the Osteoporosis Research Center at 

the University at Buffalo measured percent body fat using the dual-energy X-ray 

absorptiometry (DXA Hologic QDR 4500A machine; Hologic, Waltham, MA).

Blood pressure was determined using the average of the second and third of three separate 

measurements of resting systolic and diastolic blood pressure obtained with a standard 

sphygmomanometer. Blood specimens were collected by a certified phlebotomist after 

officers had fasted for a minimum of 12 h. Laboratory analyses of glucose and lipids were 

measured by standard laboratory techniques on the Beckman Coulter LX20 clinical 

chemistry analyzer.

Physical activity during the previous seven days was obtained with the Seven-Day Physical 

Activity Recall questionnaire used in the Stanford Five-City Project (Sallis et al., 1985). 

Participants reported the duration (hours per weekday and hours per weekend) and intensity 

(moderate, hard, and very hard) of three types of physical activity (occupational, household, 

and sports). A total physical activity score was then computed by summing the intensities of 
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the three types of physical activity performed during the weekday and weekend, and 

multiplying that number by the reported duration.

Statistical analysis

Univariate analysis was used to describe characteristics of the study participants. Because of 

the skewed distributions, insulin and HRV were log-transformed prior to analyses and then 

back-transformed for reporting as means and 95% confidence intervals (CIs). Mean values 

of HRV were obtained across tertiles of insulin using analysis of variance (ANOVA). p-

values for trends were obtained from linear regression analysis. Variables were chosen as 

potential confounders and included in the multivariate models based on their roles as 

confounding variables in published studies or if they were significantly associated with both 

the independent and dependent variables in the current study. Analysis of covariance 

(ANCOVA) was used to examine the effect of adjustment for several covariates (age, 

gender, race/ethnicity, hypertension status, smoking status, alcohol intake, physical activity, 

HDL cholesterol, and triglycerides) on the relationship between insulin and HRV. Gender 

was assessed for effect modification. Given the strong associations between obesity and 

insulin and between physical activity and HRV, associations between insulin and HRV were 

assessed among officers with high and low levels of BMI, percent body fat and physical 

activity. SAS version 9.2 was used to analyze these data (SAS, 2008).

RESULTS

Descriptive statistics of several characteristics are presented in Table 1. The mean age of all 

police officers was 40.6 ± 6.8 years (Table 1). The majority of the officers were white 

(77.4%) and 25.6% were women. All anthropometric and blood pressure measures were 

significantly higher in men as compared to women. Compared to women, men had 

significantly higher mean levels of insulin: 7.2 (95% CI: 6.6–7.8) vs. 4.4 µU/ml (95% CI: 

3.7–5.1) and glucose [93.3 ± (standard deviation, SD) 9.3 vs. 86.6 ± 8.3 mg/dl], and 

significantly lower mean levels of HF HRV [136.9 (95% CI: 119.3–157.0) vs. 197.6 ms2 

(95% CI: 155.6–250.6).

Table 2 shows the unadjusted associations between selected variables and HRV. HF HRV 

was inversely correlated with age, all anthropometric measures, blood pressure, glucose, and 

triglycerides, and positively correlated with physical activity score. Mean HF HRV was 

significantly lower among officers with hypertension [96.1 ms2 (95% CI: 4.1–124.5) as 

compared to those without hypertension (168.8 ms2 (95% CI: 148.0–192.6)], p <0.001; and 

significantly higher among African American officers [187.8 ms2 (95% CI: 144.3–244.4)] as 

compared to white/ Hispanic officers [139.6 ms2 (95% CI: 121.9–159.8)], p = 0.050.

The associations between selected variables and insulin were also analyzed (data not 

shown). Age, years of police service, and all anthropometric variables were strongly and 

positively correlated with insulin. Officers who were diagnosed as hypertensive had 

significantly higher mean levels of insulin as compared to those who were not diagnosed as 

hypertensive, 9.4 (95% CI: 7.9–1.1) and 5.7 µU/ ml (95% CI: 5.2–6.2), respectively; p 

<0.001. Increasingly higher levels of education were associated with decreasing mean levels 

of insulin, p = 0.007.
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In Table 3, unadjusted and adjusted mean values and 95% CIs of HF and LF HRV are 

presented across tertiles of insulin. As tertiles of insulin increased, mean values of both HF 

and LF HRV decreased monotonically. After adjustment for age, gender, race/ethnicity, 

hypertension status, smoking status, alcohol intake, physical activity, HDL cholesterol, and 

triglycerides, the associations between insulin and HRV were only slightly attenuated and 

remained strongly significant. We did not find significant effect modification by gender.

Mean values and 95% CIs of HRV are presented across tertiles of insulin (created 

specifically for each category of BMI), stratified by BMI, in Table 4. Insulin levels were not 

significantly associated with either HF HRV or LF HRV among officers with BMI <25 

kg/m2. However, among officers with BMI ≥25 kg/m2, insulin was inversely and 

significantly associated with HRV of both frequencies. After adjustment for confounding 

variables and CVD risk factors, the associations remained strongly significant. Among 

officers with BMI ≥25 kg/m2, the mean values and 95% CIs of HF HRV for each fertile of 

insulin were as follows: 1st insulin fertile, mean = 149.0 (95% CI: 117.6–188.6); 2nd fertile, 

mean = 139.1 (95% CI: 112.7–171.7); and 3rd fertile, mean = 124.7 ms2 (95% CI: 99.5–

156.4); adjusted p-value for trend = 0.034. The association between insulin and LF HRV 

was similar to that between insulin and HF HRV, but slightly stronger, p-value for trend = 

0.002.

In Table 5, mean values and 95% CIs of HRV are presented across tertiles of insulin 

(created specifically for each category of percent body fat), stratified by percent body fat. 

Among officers who had <25.5% body fat, the association between insulin and HRV was 

not statistically significant, whereas, among officers with ≥25.5% body fat, insulin was 

significantly and inversely associated with LF HRV (p for trend = 0.001) after adjustment 

for age, gender, race/ethnicity, hypertension status, smoking status, alcohol intake, physical 

activity, HDL cholesterol, and triglycerides. The inverse association with HF HRV did not 

quite reach statistical significance.

In Table 6, mean values and 95% CIs of HRV are presented across tertiles of insulin 

(created specifically for each category of physical activity), stratified by physical activity. 

As observed with BMI and percent body fat, stratification revealed different associations 

between the two groups. The association between insulin and HRV was not statistically 

significant among officers who reported high physical activity levels. In contrast, insulin 

was inversely and significantly associated with HF and LF HRV among officers who 

reported low physical activity, p for trend = 0.030 (for both), after adjustment for age, 

gender, race/ethnicity, hypertension status, smoking status, alcohol intake, HDL cholesterol, 

and triglycerides.

DISCUSSION

Reduced HRV is a marker of cardiac autonomic dysfunction (Vinik et al., 2011; Ziegler, 

1994) and is known to be associated with increased CVD morbidity and mortality (Chandra 

et al., 2012; Oikawa et al., 2009). In our study, higher levels of insulin were associated with 

lower levels of HRV of both frequencies among this cohort of nondiabetic police officers. 

The inverse association between insulin and HRV was also observed in officers with BMI 
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≥25 kg/m2, in officers who had ≥25.5% body fat, and in those who reported low physical 

activity. In our study, the association appeared to be slightly stronger between insulin and 

LF HRV than between insulin and HF HRV. LF HRV is modulated by both sympathetic and 

parasympathetic nervous system activity while HF HRV is modulated by parasympathetic 

nervous system activity (Stein and Pu, 2012). Future research that incorporates a stimulus to 

elicit sympathetic activity is warranted to determine whether the association with insulin is 

differentially associated with parasympathetic versus sympathetic function.

Our results that suggest lower vagal control accompanies higher fasting levels of insulin are 

consistent with some of the results from previous studies. Berkelaar et al. (2013) examined 

the effects of serum insulin levels on vagal control over the heart and the association 

between fasting insulin levels and vagal control. Their results showed that insulin levels 

were negatively correlated with vagal control, but these associations disappeared after 

adjustment for age, BMI, and insulin sensitivity. The authors suggested that BMI and insulin 

sensitivity may be the key factors that are influencing cardiac vagal control, and not insulin 

levels. Results from a study conducted on ARIC participants showed that, in those 

individuals without diabetes, fasting serum insulin was inversely associated with HF HRV 

(Liao et al., 1995). The authors observed the biggest decrease in HF HRV in those persons 

in the highest quartile of fasting insulin (≥14 µU/ dl). After stratifying by BMI using a cut 

point of BMI ≥27 kg/m2, they found similar inverse associations between serum insulin and 

HF HRV in the higher and lower BMI groups. Galinier et al. (1999) found that patients with 

hyperinsulinemia or insulin resistance had a significant decrease in LF HRV, which 

reflected sympathetic modulation of HRV.

Chronically elevated levels of insulin may indicate insulin resistance. Stein et al. (2008) 

explored the relationship between insulin resistance (and inflammation factors) and lower 

HRV in normoglycemic older adults. Their results showed that greater insulin resistance was 

consistently correlated with lower HRV even after adjustment for inflammatory factors. In 

another study, the authors investigated whether young Indian men having low BMI had 

different autonomic nervous responses to acute hyperinsulinemia when compared to others 

who had a normal BMI (Sucharita et al., 2011). They observed that LF HRV significantly 

increased and HF HRV significantly decreased with hyperinsulinemia but that there were no 

differences in the magnitude of responses between the two BMI groups. Because there were 

no officers considered to have low BMI in our study, we compared normal to high BMI and 

we observed that inverse associations between insulin and HRV were only present among 

officers with BMI ≥25 kg/m2.

Some studies demonstrate that the relationship between insulin and HRV is dependent on 

the insulin-sensitive status of the individuals being studied. In one study, male subjects were 

divided into insulin sensitive and insulin resistant groups to study the effect of insulin on 

HRV (Bergholm et al., 2001). The results showed that, under normoglycemic conditions, 

insulin changed HRV toward sympathetic predominance in insulin sensitive subjects 

whereas, in the less insulin-sensitive subjects, insulin did not change any of the components 

of HRV. According to the authors, their data demonstrated it was the individual’s insulin 

sensitivity status that modulated the response of HRV to insulin since both groups of 

individuals were similar with respect to BMI, waist-to-hip ratio, and age. Paolisso et al. 
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(2000) also investigated the effects of insulin infusion on cardiac autonomic nervous system 

activity in healthy subjects and in patients with various types of insulin-resistance. They 

found that insulin stimulated ANS activity in healthy subjects but not in insulin-resistant 

patients; and that those effects were different in the two groups.

Exercise training or physical activity positively affects cardiac autonomic function 

(Goulopoulou et al., 2010) and various CVD risk factors (Tibana et al., 2013), and may 

influence the relationship between insulin (or glucose) and autonomic function. In one 

study, 464 postmeno-pausal women (45–75 years) were randomized to one of three exercise 

training groups or a nonexercise control for 6-months period (Earnest et al., 2010). After 6 

months of exercise, measures of autonomic function improved and this improvement was 

associated with a reduction in insulin levels. We assessed the association between insulin 

and HRV while stratifying on physical activity and our results showed that there was an 

inverse association between insulin and HRV among officers who reported low physical 

activity.

Results which are inconsistent with our findings have also been reported. Stockhorst et al. 

(2011) showed that, in healthy humans, an acute increase in serum insulin, either due to 

insulin injection or to the subsequent increase in insulin after administration of glucose, was 

significantly correlated with an acute increase in the HF-band of HRV. However, the 

associations detected in the present study are likely due to long-term alterations in insulin 

levels rather than to acute changes.

There is evidence of plausible biological mechanisms in the relationship between the 

circulating levels of insulin and HRV. The pancreatic islets of Langerhans have an 

abundance of nerve fibers from the sympathetic and para-sympathetic branches of the 

autonomic nervous system (Ahren, 2000; Caumo and Luzi, 2004; Woods and Porte, 1974). 

Insulin receptors located in several regions of the central nervous system such as the median 

hypothalamus may also play a role in the relationship between insulin and the autonomic 

nervous system (Sauter et al., 1983). Insulin, by binding to its receptors in the arcuate 

nucleus area of the hypothalamus, activates several pathways that culminate in increased 

sympathetic nervous system activity (Cassaglia et al., 2011; Chronwall, 1985; Dampney, 

2011). Further support comes from the finding that stimulation of the arcuate nucleus leads 

to an increase in sympathetic activity and heart rate (Nakamura et al., 2009; Ruggeri et al., 

2001). Therefore, elevations in blood insulin levels can stimulate sympathetic nervous 

system activity (Anderson et al., 1991; Young et al., 2010) and vagal activation also 

stimulates insulin secretion (Woods and Porte, 1974).

There are a few limitations that must be mentioned. Because of the cross-sectional design of 

this study, causal inference cannot be made nor can the chronological sequence of the main 

variables be determined. The results of our study could only be generalizable to police 

officers who are affiliated with departments of similar size and geographic location.

Our study also has several strengths. To the best of our knowledge, this is the first study to 

investigate the association between fasting insulin and HRV among police officers. HRV 

was measured and processed using tightly controlled standardized methods. Insulin values 
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were determined using a standardized test by an accredited laboratory experienced in 

conducting analyses for various types of research studies. Data were collected on several 

variables allowing for assessment of effect modification and adjustment of confounders and 

CVD risk factors.

CONCLUSIONS

In summary, higher levels of insulin were associated with lower levels of HRV of both 

frequencies among these police officers. Higher levels of HRV are desirable because they 

are associated with decreased risk of CVD and several CVD-related conditions (Bigger et 

al., 1995; Chandra et al., 2012; Fukuta et al., 2003). Our results are consistent with those of 

previous studies, which show an inverse relationship between insulin and HRV. Health 

programs for police officers could include surveillance of and interventions for obesity, 

which is strongly associated with elevated insulin levels, with an overall goal of maintaining 

optimal HRV levels. This is especially important for this occupational cohort that 

experiences high stress levels (Hartley et al., 2011), since individuals who experience 

increased job-related stress have been shown to have decreased HRV and reduced recovery 

of autonomic nervous system function (Rieger et al., 2013). Future studies, employing larger 

sample sizes and longitudinal study designs will be useful in determining whether elevated 

insulin levels predict subsequent decline in HRV.
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TABLE 1

Demographics and other selected characteristics by gender

Characteristics
All (n = 355)
Mean ± SD

Women (n = 91)
Mean ± SD

Men (n = 264)
Mean ± SD P-value

Age (years) 40.6 ± 6.8 40.3 ± 5.9 40.7 ± 7.1 0.664

Years of service 14.3 ± 7.2 13.5 ± 6.9 14.5 ± 7.3 0.240

BMI (kg/m2) 29.1 ± 4.6 25.8 ± 4.4 30.3 ± 4.1 <0.0001

Body fat (%) 25.9 ± 6.2 26.2 ± 6.1 25.8 ± 6.2 0.675

Waist circumference (cm) 94.2 ± 14.1 79.7 ± 10.8 99.2 ± 11.3 <0.0001

Diastolic BP (mm Hg) 77.4 ± 10.0 74.1 ± 9.8 78.5 ± 9.9 0.0003

Systolic BP (mm Hg) 120.8 ± 11.8 116.5 ± 13.5 122.3 ± 10.7 0.0003

Physical activity score 21.4 ± 18.2 22.0 ± 17.3 21.1 ± 18.5 0.703

Alcohol (no. of drinks per week) 5.0 ± 7.9 3.5 ± 4.6 5.6 ± 8.7 0.005

Glucose (mg/dl) 91.6 ± 9.5 86.6 ± 8.3 93.3 ± 9.3 <0.0001

HDL cholesterol (mg/dl) 46.6 ± 14.7 58.4 ± 15.7 42.6 ± 11.9 <0.0001

Triglycerides (mg/dl) 136.9 ± 136.8 88.1 ± 139.2 153.5 ± 132.2 <0.0001

Insulin (uU/ml)a 6.30 (5.82–6.83) 4.35 (3.70–5.12) 7.16 (6.56–7.81) <0.0001

HRV (HF) (ms2)a 150.4 (133.4–169.5) 197.6 (155.6–250.6) 136.9 (119.3–157.0) 0.008

HRV (LF) (ms2)a 213.4 (193.8–234.9) 189.0 (155.4–230.0) 222.5 (199.1–248.4) 0.146

N (%) N (%) N (%)

Hypertension status 0.415

  Hypertensive 73 (20.6) 16 (17.6) 57 (21.6)

  Not hypertensive 282 (79.4) 75 (82.4) 207 (78.4)

Race/ethnicity 0.047

  White 270 (77.4) 65 (71.4) 205 (79.5)

  African American 73 (20.9) 26 (28.6) 47 (18.2)

  Hispanic 6 (1.7) 0 (0) 6 (2.3)

Education 0.035

  ≤ 12 years/GED 34 (9.7) 3 (3.3) 31 (11.9)

  College < 4 yr 192 (54.6) 56 (61.5) 136 (52.1)

  College ≥ 4 yr 126 (35.8) 32 (35.2) 94 (36.0)

Shift work status <0.0001

  Day 131 (38.6) 57 (65.5) 74 (29.4)

  Afternoon 120 (35.4) 17 (19.5) 103 (40.9)

  Night 88 (26.0) 13 (14.9) 75 (29.8)

Smoking status 0.005

  Current 54 (15.4) 21 (23.6) 33 (12.6)

  Former 79 (22.5) 25 (28.1) 54 (20.6)

  Never 218 (62.1) 43 (48.3) 175 (66.8)

Body mass index (kg/m2) <0.0001

  <25 65 (18.3) 46 (50.6) 19 (7.2)

  ≥25 290 (81.7) 45 (49.5) 245 (92.8)
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Characteristics
All (n = 355)
Mean ± SD

Women (n = 91)
Mean ± SD

Men (n = 264)
Mean ± SD P-value

Metabolic Syndrome <0.0001

  Present (≥3 components) 82 (23.2) 6 (6.7) 76 (28.8)

  Absent 272 (76.8) 84 (93.3) 188 (71.2)

Insulin (uU/ml) (tertiles) <0.0001

  Low (1–5) 133 (37.5) 57 (62.6) 76 (28.8)

  Medium (6–8) 91 (25.6) 18 (19.8) 73 (27.7)

  High (9–55) 131 (36.9) 16 (17.6) 115 (43.6)

BP, blood pressure.

P-values were obtained from t-tests and chi-square tests.

Presence of metabolic syndrome is defined as ≥3 of the components.

a
Results were first log-transformed then back-transformed.
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TABLE 2

Correlations and mean levels of HF and LF HRV with selected covariates

HF HRV LF HRV

Age (years) −0.331, <0.0001 −0.260, <0.0001

BMI (kg/m2) −0.151, 0.004 −0.134, 0.012

Body fat (%) −0.003, 0.955 0.034, 0.535

Waist circumference (cm) −0.236, <0.0001 −0.162, 0.002

Diastolic BP (mm Hg) −0.245, <0.0001 −0.082, 0.122

Systolic BP (mm Hg) −0.229, <0.0001 −0.163, 0.002

Physical activity score 0.179, 0.001 0.145, 0.006

Alcohol (no. of drinks per week) −0.117, 0.09 −0.139, 0.010

Glucose (mg/dl) −0.136, 0.011 −0.014, 0.794

HDL cholesterol (mg/dl) 0.052, 0.332 −0.039, 0.467

Triglycerides (mg/dl) −0.139, 0.009 −0.069, 0.197

Mean (95% CI) Mean (95% CI)

Hypertension status

  Hypertensive 96.1 (74.1–124.5) 167.3 (135.6–206.4)

  Not hypertensive 168.8 (148.0–192.6) 227.2 (204.2–252.9)

  P-valuea <0.001 0.011

Race/ethnicity

  White/Hispanic 139.6 (121.9–159.8) 216.8 (194.3–241.9)

  African American 187.8 (144.3–244.4) 198.7 (160.5–245.9)

  P-valuea 0.050 0.475

Smoking status

  Current 144.2 (106.1–195.9) 193.6 (151.2–247.8)

  Former 133.2 (103.4–171.7) 197.2 (160.8–241.8)

  Never 155.2 (133.2–180.8) 223.4 (197.6–252.6)

  P-valuea 0.586 0.425

BP, blood pressure.

a
P-values are from ANOVA and are for any difference between the means.
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TABLE 3

Mean values and 95% confidence intervals (CIs) of HRV by tertiles of insulin

Tertiles of insulin (uU/ml)

1st tertile
Range: 1–5; n = 133

Mean (95% CI)

2nd tertile
Range: 6–8; n=91
Mean (95% CI)

3rd tertile
Range: 9–55; n = 131

Mean (95% CI) P-value

HF HRV

  Model 1 188.2 (155.2–228.3) 153.6 (121.7–194.0) 117.9 (97.1–143.2) <0.0001

  Model 2 170.8 (141.3–206.3) 155.8 (124.9–194.4) 128.9 (106.7–155.6) 0.003

  Model 3 156.3 (128.6–189.9) 154.3 (124.3–191.5) 127.9 (105.0–155.8) 0.017

LF HRV

  Model 1 245.7 (210.4–287.0) 225.4 (186.8–272.0) 178.0 (152.2–208.1) 0.002

  Model 2 249.5 (213.6–291.3) 221.7 (184.9–265.8) 177.3 (151.9–206.9) 0.001

  Model 3 237.4 (201.9–279.2) 222.5 (185.9–266.2) 177.0 (150.3–208.5) 0.008

Results for HF and LF HRV were first log-trans formed then back-transformed.

Range refers to the minimum and maximum levels for each tertile of insulin.

P-values were obtained from linear regression models.

Model 1: Unadjusted

Model 2: Adjusted for age and gender

Model 3: Adjusted for age, gender, race/ethnicity, hypertension, smoking status, alcohol intake, physical activity, HDL cholesterol, and 
triglycerides.
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TABLE 4

Mean values and 95% confidence intervals (CIs) of HRV by BMI-specific tertiles of insulin, stratified by BMI

Tertiles of insulin

1st tertile
Mean (95% CI)

2nd tertile
Mean (95% CI)

3rd tertile
Mean (95% CI) P-value

BMI ≥25 kg/m2 Range: 1–5; n = 90 Range: 6–9; n = 100 Range: 10–55; n = 100)

HF HRV

  Model 1 180.5 (141.9–229.5) 145.2 (115.5–182.4) 112.1 (89.2–140.8) <0.001

  Model 2 149.0 (117.6–188.6) 139.1 (112.7–171.7) 124.7 (99.5–156.4) 0.034

LF HRV

  Model 1 267.0 (219.3–324.9) 224.5 (186.3–270.5) 168.7 (140.0–203.2) <0.001

  Model 2 253.4 (207.1–310.1) 212.6 (177.5–254.5) 175.5 (144.6–212.9) 0.002

BMI <25 kg/m2 Range: 1–2; n = 19 Range: 3–5; n = 24 Range: 6–18; n = 22

HF HRV

  Model 1 234.1 (147.6–371.3) 185.6 (123.1–279.8) 172.4 (112.3–264.6) 0.255

  Model 2 209.7 (125.3–350.7) 175.8 (113.1–273.4) 179.7 (111.5–289.7) 0.498

LF HRV

  Model 1 193.4 (139.5–268.1) 217.6 (162.7–291.0) 210.0 (155.0–284.5) 0.874

  Model 2 181.9 (126.5–261.6) 219.7 (160.9–300.1) 220.6 (157.5–309.0) 0.494

Results for HF and LF HRV were first log-transformed then back-transformed.

Range refers to the minimum and maximum levels for each tertile of insulin.

P-values were obtained from linear regression models.

Model 1: Unadjusted.

Model 2: Adjusted for age, gender, race/ethnicity, hypertension, smoking status, alcohol intake, physical activity, HDL cholesterol, and 
triglycerides.
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TABLE 5

Mean values and 95% confidence intervals (CIs) of HRV by body fat-specific tertiles of insulin, stratified by 

body fat

Tertiles of insulin

1st tertile
Mean (95% CI)

2nd tertile
Mean (95% CI)

3rd tertile
Mean (95% CI) P-value

Body fat ≥25.5% Range: 1–5; n = 59 Range: 6–9; n = 58 Range: 10–55; n = 56

HF HRV

  Model 1 230.0 (175.7–301.2) 149.5 (113.9–196.2) 117.7 (89.3–155.2) 0.001

  Model 2 189.0 (142.7–250.3) 153.1 (117.9–198.7) 133.6 (100.1–178.1) 0.091

LF HRV

  Model 1 299.7 (241.8–371.6) 215.4 (173.4–267.5) 168.5 (135.1–210.1) <0.001

  Model 2 306.7 (243.3–386.7) 206.7 (166.6–256.3) 166.5 (131.3–211.2) 0.001

Body fat <25.5% Range: 1–4; n = 54 Range: 5–8; n = 68 Range: 9–36; n = 60

HF HRV

  Model 1 162.5 (117.7–224.3) 157.8 (118.4–210.4) 110.4 (81.3–149.8) 0.007

  Model 2 139.8 (102.2–191.0) 145.4 (112.1–188.6) 116.8 (85.8–159.0) 0.083

LF HRV

  Model 1 201.8 (155.6–261.7) 232.6 (184.5–293.3) 179.9 (140.5–230.2) 0.232

  Model 2 191.4 (146.8–249.6) 219.9 (176.4–274.3) 187.5 (144.3–243.6) 0.634

Results for HF and LF HRV were first log-transformed then back-transformed.

P-values were obtained from linear regression models.

Model 1: Unadjusted.

Model 2: Adjusted for age, gender, race/ethnicity, hypertension, smoking status, alcohol intake, physical activity, HDL cholesterol, and 
triglycerides.
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TABLE 6

Mean values and 95% confidence intervals (CIs) of HRV by physical activity-specific tertiles of insulin, 

stratified by physical activity

Tertiles of insulin

1st tertile
Mean (95% CI)

2nd tertile
Mean (95% CI)

3rd tertile
Mean (95% CI) P-value

High physical activity Range: 1–4; n = 55 Range: 5–8; n = 60 Range: 9–55; n = 63

HF HRV

  Model 1 210.0 (155.6–283.3) 168.1 (126.2–223.9) 136.6 (103.3–180.7) 0.015

  Model 2 172.2 (126.0–235.4) 141.1 (107.2–185.6) 166.0 (121.8–226.1) 0.556

LF HRV

  Model 1 246.4 (192.6–315.2) 236.3 (186.7–299.2) 203.1 (161.4–255.7) 0.236

  Model 2 261.4 (202.1–338.2) 227.3 (181.3–284.8) 187.1 (145.0–241.3) 0.133

Low Physical activity Range: 1–5; n = 61 Range: 6–9; n = 63 Range: 10–36; n = 53

HF HRV

  Model 1 174.9 (131.5–232.5) 146.5 (110.6–193.9) 91.0 (67.0–123.6) 0.001

  Model 2 156.3 (118.0–206.9) 142.2 (109.1–185.3) 97.5 (71.7–132.5) 0.030

LF HRV

  Model 1 249.7 (199.1–313.0) 206.3 (165.2–257.8) 150.7 (118.2–192.1) 0.001

  Model 2 239.1 (189.1–302.3) 193.5 (155.0–241.4) 164.6 (127.4–212.7) 0.030

Results for HF and LF HRV were first log-transformed then back-transformed.

P-values were obtained from linear regression models.

Model 1: Unadjusted.

Model 2: Adjusted for age, gender, race/ethnicity, hypertension, smoking status, alcohol intake, HDL cholesterol, and triglycerides.

High physical activity: ≥16.5 (the median).
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